On the use of PRESAGE detectors for the dosimetry of helical TomoTherapy small fields

A. Moutsatsos¹, E. Pantelis^{1,2}, C. Antypas²,
L. Petrokokkinos¹, E. P. Pappas¹, E. Zoros¹,
P. Pantelakos²,
E. Georgiou¹ and P. Karaiskos¹

¹Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece

²CyberKnife & TomoTherapy Department, Iatropolis Clinic, Ethnikis Antistasis 54-56, Chalandri, Athens, Greece

Modern Radiotherapy <u>Techniques</u>

- √ Use of small fields (or beams)
- ✓ Steep dose gradients
- √ 3D, complex-shaped dose dist.

Verification

- √ Affects clinical outcome
- ✓ Dosimetic and Geometric verification in 3D
- ✓ No ideal dosimeter → Multi-Detector approach including research dosimeters

<u>Purpose:</u> To apply 3D PRESAGE dosimetry for the verification of helical TomoTherapy dose delivery for a clinical prostate plan, and assess possible corrections of the A1SL ion-chamber response for a Plan-Class-Specific-Reference irradiation field (PCSR).

- ➤ In-house constructed PMMA phantom
- ➤ Adequate inserts permitting :
- - ✓ 3D PRESAGE dosimetry
 - ✓ Film dosimetry (EBT2, Gafchromic) – –
 - ✓ A1SL (IBA) ion chamber dosimetry

Methods 1: Plan-Class-Specific Reference field (f_{PCSR})

- O TG-148 recommendations:
 - ✓ 2.5 cm collimator
 - ✓ 0.287 pitch
 - ✓ 2.0 Modulation Factor
 - ✓ Homogenous Dose distribution (**4 Gy**) (Cylinder: 5 cm long and 5 cm diam.)
- o pre-irradiation CT-scan
- \circ A1SL: $k_{Q_{ref},Q_0} = 0.996$

- - ► A1SL insert

Methods 2: Prostate clinical plan

- ✓ 3 x 2.4 Gy to Prostate
- ✓ 3 x 2.9 Gy to Seminal vessels
- ✓ 2.5 cm collimator
- ✓ 0.287 pitch
- ✓ 2.4 actual MF

Results: PCSR plan

Detector	D _{PCSR} (Gy)
PRESAGE	3.98±0.10
EBT-2	4.03±0.12
A1SL	4.09±0.05
$k_{Q_{ref},Q_{PCSR}}^{f_{ref},f_{PCSR}}$	0.98a±0.03

a Although within uncertainties, A1SL was found to overestimate **D**_{PCSR} by 2% - in accordance with Gago-Arias et al. {MedPhys, **39**, 1964 (2012); doi: 10.1118/1.3692181}

Results:

Prostate clinical plan

1 EUROPEAN CONGRESS OF MEDICAL PHYSICS
September 1-4, 2016
Eugenides Foundation, Athens-Greece

A1SL: (7.21 ± 0.03) Gy

Conclusion

Besides water equivalence and exquisite spatial resolution, necessitated for small field dosimetry and determination of appropriate correction factors, PRESAGE dosimeters offer the advantage of 3D dose verification.

